Executive Master Program
Management of Product Development

ASD – Agile Systems Design

Technology + Management
The HECTOR School is the Technology Business School of the Karlsruhe Institute of Technology (KIT). It is named after Dr. Hans-Werner Hector, one of the co-founders of SAP AG.

The school aims to provide professionals with state-of-the-art technological expertise and management know-how within part-time education programs. The HECTOR School fosters lifelong learning within industry. Participants are supported in their career development with executive master degree programs, certificate courses, and customized partner programs.

The benefits of the executive master programs are numerous for participants as well as for the companies they work for:

- **Unique Holistic Approach**: A combination of technology expertise and management know-how.
- **State-of-the-Art Knowledge**: Direct transfer from the Karlsruhe Institute of Technology (KIT) research.
- **Part-Time Structure**: Allows participants to continue with their demanding careers whilst acquiring new skills.
- **Master Thesis to set up Innovation Projects**: Companies gain outstanding added value through the consultation of such projects by professors from KIT.
- **Excellent Networking Opportunities**: Professional networking is fostered across industries and on an international scale.

Key Facts: Part-Time Master of Science (M.Sc.) Programs

Program Structure
- Part-time, 10 x 2-week modules
- Duration: part-time lecture period of ~15 months
- Master thesis: project work in the company, 9 months
- 5 Engineering and 5 Management Modules
- Teaching language: English
- Yearly program start: October

Academic Degree
Master of Science (M.Sc.) from the KIT (90 ECTS)

Admission Requirements
- An academic degree: e.g. Bachelor, Master, or Diploma
- 1-2 years work experience (depending on the level of the first degree, recommended > 3 years)
- TOEFL score of at least 230 or 90 iBT

Accreditation
The KIT is system-accredited by AAQ. All HECTOR School master programs are accredited by the internal quality assurance system of the KIT.
Product development is the driver of innovation. You learn to manage product development in an efficient, methodical, creative and success-oriented way in this master program. You become qualified to be the driving force for successful product innovation in your company with the scientifically sound and practice-oriented training program for professionals.«

Prof. Dr.-Ing. Dr. h. c. Albert Albers

Product development is the process of entirely planning and prototyping novel technical systems. It ranges from finding the product profile to creating a concept, designing, making prototypes, testing and validating. The actual manufacturing phase follows subsequently and is the second and final stage of the product creation process.

Thus, product development is certainly one of the core means of adding value in companies and is crucial for their success through innovation. Creativity and performance potential define the success of product development.

Participants of the master program Management of Product Development (MPD) are able to analyse, design, operate and implement the product development process in their companies in an optimized way by means of acquired research and application-oriented methods and processes. Based on an integrated approach to product creation processes, the graduates can successfully implement innovative ideas and innovation in competitive products, while they draw a special focus on major criteria such as customized product solutions, the reduction of production costs as well as the optimization of quality standards. Furthermore, they are capable of implementing creativity techniques to accompany further innovation processes.

Finally, due to increasing performance and competition pressure in product development, graduates can counteract shorter development times and product life cycles with appropriate methods and techniques.

Additionally, Management of Product Development shares five management modules with the other master programs. This fosters networking across sectors and provides the participants with general knowledge in finance, accounting, marketing, international multiproject management, international law, and human resource management. In this way they can consider the commercial implications of project decisions and develop a holistic view.
Engineering Modules (EM)
State-of-the-Art Technology Expertise in Product Development Processes

EM 1: Design and Validation Process & Information Systems for Product Development
The module offers in-depth insight into the fundamentals of product development processes and its challenges. Individual process steps and the organization are defined. Moreover, the product lifecycle is implemented in the form of a Product Lifecycle Management (PLM) system. When using virtual reality systems (e.g. CRM, ERP), it is important to identify both the opportunities and limits for this new technology. The participants identify workflows relevant to data modeling.

The module also covers methods of validation in a Product Design Project (PDP) and specific environment simulations (e.g. FEM, BEM). The typical approach to planning and executing a simulation study is applied.

The first prototypes are set up early in the process and continuously gain functionality and maturity through joint validation with the customer. In this way, the direction of development is secured at an early stage and late, expensive changes to the product are avoided. In addition, customers’, users’ and providers’ benefits are systematically integrated in the form of product profiles.

ASD - Agile Systems Design consists of up to six phases, eight integrated principles and a methodological toolbox, through which current development methods are recommended according to the situation and needs of the development team.

Participants realize the effect and impact of design modifications as well as the influence of prototypes or simulations on the innovation process. In addition to that, an understanding of structures, standards and modifications in CAx and VR systems is provided. Knowledge of the background of information technology is an absolute necessity.

EM 2: Integrated Product Development by ASD – Agile Systems Design
One of the most important factors of successful product development is the systematic planning and use of adequate tools and methods depending on various situations. E.g. the application of the portfolio analysis, of mind mapping or Data Stream Management (DSM) is essential. The approach ASD – Agile Systems Design supports the product developer across the entire product development process. By a situation-oriented combination of structuring and agile elements, as well as the consistent integration of the principles of PGE - Product Generation Engineering, the developer is able to develop products efficiently and effectively through continuous customer integration. ASD -Agile Systems Design also supports the developer in continuous validation.

EM 3: PGE - Product Generation Engineering
While the first two modules systematically explain and deepen knowledge of the principles of the product development process, this module focuses on further aspects for a successful product development. Crucial success factors in product development, such as Total Quality Management (TQM) and Total Cost of Ownership (TCO), are explained and illustrated by examples.

Methods presented, such as FMEA (Failure Mode and Effects Analysis) and FTA (Failure Tree Analysis) as well as target
costing, are efficient tools to support the product development process. Using examples, the participants learn to structure and systematically manage the design process in teams. The participants are aware of the significance and limitations of modern interface technologies. They can assess and classify business strategies in terms of international competitiveness.

Finally, methods are presented for analyzing lightweight potentials in overall systems, design by multi-material as well as methods for synthesis and structural optimization of isotropic and anisotropic materials.

EM 4: Systems & Cases

Systems engineering is an interdisciplinary approach to the early definition of customers’ needs and functionalities, the documentation of system requirements to be developed, and the continuous synthesis and validation of the system during the development process. A wide range of methodological aids is available to support the developer in systems synthesis and analysis. Eco-design methods are adequate tools to use ecological aspects as chances for product innovations.

A final case study serves to acquire competence in the use of development methods. For this purpose, a development task is to be defined based on a concrete market situation and using the scenario technique. Then, this definition is to be implemented in a product concept. Intuitive and discursive creativity techniques based on TRIZ-box or methods of cost control are used under close-to-reality conditions. Based on this case study, all skills and theories learned are implemented in a practice-oriented environment. Product planning, product specification, and concept development processes are applied.

EM 5: Multi-Technological Systems & Workshops

Successful work on complex multi-technological systems requires work in interdisciplinary teams. Apart from the use of appropriate support methods, such as the V-model, understanding of the varying perspectives of the team members is required. This results in high requirements on the quality assurance of interdisciplinary product development processes. Basic principles are presented and made available in the form of a practical guide.

Finally, key methods of product development are trained in workshops and first application competence is acquired. Among others, analysis methods, universal problem solution methods, and verification and validation methods (DoE, XiL – X-in-the-Loop) are applied.
MM 1: INNOVATION & PROJECTS. Numerous paradigm shifts are currently being driven by the development and extensive use of new technologies. Profound changes in rapidly changing markets flow directly from this. Consequently, apart from classic project management, new management tools and methods are required, because agility and innovation are some of the success factors in the current business climate. The module thus focuses on one of KIT’s unique selling points: technology-driven innovation.

MM 2: FINANCE & VALUE. Modern corporate governance is based on the creation of values. In the Finance & Value module, students learn essential methods of measuring, processing, and communicating the value added by corporate decisions that enable effective planning, management, and monitoring of corporate activity and corporate units. External value-based communication makes it possible to win stakeholders who are committed to the company over the long term.

MM 3: MARKETING & INFORMATION. Many of today’s most successful businesses excel in satisfying customer needs, because their decisions are based on data instead of gut feeling. This is what this module is about. One week looks at how to use data for designing customer solutions (and get paid according to their value). The other week looks more generally at issues surrounding the use of (big) data for business decision-making.

MM 4: STRATEGY & PEOPLE. The key to corporate success lies in the correct strategy. But how do you recognize opportunities, develop a viable concept, and successfully implement it? In times of scarce human capital, it is more important than ever before to ensure employees are a perfect fit for their position and to motivate them to implement the strategy together. The module imparts state-of-the-art management techniques and know-how on evidence-based human resources management, people analytics, and leadership approaches.

MM 5: DECISIONS & RISK. Management implies making decisions. A valid data warehouse forms the basis for these decisions. The aim of this module is to give students a toolkit of various quantitative decision-making models, so that the possibilities and limitations of methodical decision-making support (among others also optimization methods) can be used efficiently in the day to day running of projects.
A HECTOR School Master: Leadership Know-How for Demanding Careers.

»Personally, the Hector Master Program was an excellent experience. The Management in Product Development Program provided me with a comprehensive set of tools to master today’s product development challenges. In addition, the course in business accounting and management expanded my knowledge for my daily professional work as Manager. The technical course delivered state-of-the-art-knowledge in technology and methodology, ready for use. Overall, the Executive Master Program was great professional development training.«

The academic calendar for each program starting annually in October consists of 10 intensive modules, each with a duration of 10 days. At the end, all programs conclude with a master thesis.
More Master Programs

Six Part-Time Master Programs
- Production & Operations Management (POM)
- Management of Product Development (MPD)
- Mobility Systems Engineering & Management (MSEM)
- Energy Engineering & Management (EEM)
- Service Management & Engineering (SME)
- Financial Engineering (FE)

In addition to the master programs, the HECTOR School also offers certificate courses (3 - 5 day seminars on state-of-the-art technology topics) and partner programs.