Executive Master Program
Mobility Systems Engineering & Management

Technology + Management

*Subject to the approval procedure of KIT and the ministry for science, research and art in Baden-Württemberg
The benefits of the executive master programs are numerous for state-of-the-art technological expertise and management know-how within part-time education programs. The HECTOR School fosters lifelong learning within industry. Participants are supported in their career development with executive master degree programs, certificate courses, and customized partner programs.

The HECTOR School is the Technology Business School of the Karlsruhe Institute of Technology (KIT). It is named after Dr. Hans-Werner Hector, one of the co-founders of SAP AG. Werner Hector, one of the co-founders of SAP AG. Karlsruhe Institute of Technology (KIT). It is named after Dr. Hans-Werner Hector, one of the co-founders of SAP AG. The school aims to provide professionals with master of Science (M.Sc.) from the KIT (90 ECTS) certificate courses, and customized partner programs.

Part-Time Structure: Allows participants to continue with their demanding careers whilst acquiring new skills.

Master Thesis to set up Innovation Projects: Companies gain outstanding added value through the consultation of such projects by professors from KIT.

Excellent Networking Opportunities: Professional networking is fostered across industries and on an international scale.

Program Structure
- Part-time, 10 x 2-week modules
- Duration: part-time lecture period of ~15 months
- Master thesis: project work in the company, 9 months
- 5 Engineering and 5 Management Modules
- Teaching language: English
- Yearly program start: October

Academic Degree
Master of Science (M.Sc.) from the KIT (90 ECTS)

Admission Requirements
- An academic degree: e.g. Bachelor, Master, or Diploma
- 1-2 years work experience (depending on the level of the first degree, recommended > 3 years)
- TOEFL score of at least 230 or 90 iBT

Accreditation
The KIT is system-accredited by AAQ. The master program MSEM currently underlies the approval procedure of the KIT and the Ministry of Science, Research and Art Baden-Württemberg with the focus on starting in October 2018. It aims for the accreditation by the internal quality assurance system of the KIT, as all other master programs are already accredited.

The HECTOR School is the Technology Business School of the Karlsruhe Institute of Technology (KIT). It is named after Dr. Hans-Werner Hector, one of the co-founders of SAP AG. The school aims to provide professionals with state-of-the-art technological expertise and management know-how within part-time education programs. The HECTOR School fosters lifelong learning within industry. Participants are supported in their career development with executive master degree programs, certificate courses, and customized partner programs.

The benefits of the executive master programs are numerous for state-of-the-art technological expertise and management know-how within part-time education programs. The HECTOR School fosters lifelong learning within industry. Participants are supported in their career development with executive master degree programs, certificate courses, and customized partner programs.

The story goes on with reducing the size and cost of the product, performance requirements, allowing the system hardware to be enhanced for the upcoming hype. Challenges start with new processes, methods and tools of systems engineering that are needed to design and validate these networks of embedded systems. Agile programming (e.g. Scrum) for self-learning functions up to artificial intelligence will find its way into conservative mechanical engineering and enhance the more or less established life cycle models such as the “V”. In addition validation will step beyond X-in-the-Loop and demand for data analytics of a large number of sensor data. But what is the right method for the right challenge? Assessments will answer these questions. Since CMMI and SPICE, which will surely be enhanced for the upcoming hype, questions, currently we rely on CMMI and SPICE, which will surely be enhanced for the upcoming hype.

Also electronic systems are designed to do some specific tasks, rather than be a general-purpose computer for multiple tasks. Some also have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs. Standards (e.g. ISO 26262) for functional safety) will influence the design decision process.

The Future of Mobility Systems
Master Program Mobility Systems Engineering & Management (MSEM)

Key Facts: Part-Time Master of Science (M.Sc.) Programs

Program Structure
- Part-time, 10 x 2-week modules
- Duration: part-time lecture period of ~15 months
- Master thesis: project work in the company, 9 months
- 5 Engineering and 5 Management Modules
- Teaching language: English
- Yearly program start: October

Academic Degree
Master of Science (M.Sc.) from the KIT (90 ECTS)

Admission Requirements
- An academic degree: e.g. Bachelor, Master, or Diploma
- 1-2 years work experience (depending on the level of the first degree, recommended > 3 years)
- TOEFL score of at least 230 or 90 iBT

Accreditation
The KIT is system-accredited by AAQ. The master program MSEM currently underlies the approval procedure of the KIT and the Ministry of Science, Research and Art Baden-Württemberg with the focus on starting in October 2018. It aims for the accreditation by the internal quality assurance system of the KIT, as all other master programs are already accredited.

Electronic systems are omnipresent. Currently they range from portable devices such as smart phones to large stationary installations like the systems controlling of power plants. Communication - stationary or over-the-air – of these particular systems form a network of control, sensing and influencing the environment. A cyber physical system is the result.

These trends fundamentally influence industry (industry 4.0) and mobility, mainly vehicles for automated driving, electrical driving trains and car-to-car communication. As a consequence, sustainable mobility concepts are increasingly using embedded electronic systems to maximize efficiency, enable automation and reduce pollution.

Challenges start with new processes, methods and tools of systems engineering that are needed to design and validate these networks of embedded systems. Agile programming (e.g. Scrum) for self-learning functions up to artificial intelligence will find its way into conservative mechanical engineering and enhance the more or less established life cycle models such as the “V”. In addition validation will step beyond X-in-the-Loop and demand for data analytics of a large number of sensor data. But what is the right method for the right challenge? Assessments will answer these questions, currently we rely on CMMI and SPICE, which will surely be enhanced for the upcoming hype.

Also electronic systems are designed to do some specific tasks, rather than be a general-purpose computer for multiple tasks. Some also have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs. Standards (e.g. ISO 26262) for functional safety) will influence the design decision process.

The story goes on with reducing the size and cost of the product, increasing the reliability and performance of electronic components such as sensors and controllers enables more and more digital applications. And does not end here. As a consequence the demand for innovations by society and the raise of new technologies in universities and large scale research institutions offer tremendous opportunities to overcome “historic” electronic development thinking. The Master Program in Mobility Systems Engineering and Management, starting in October 2018, offers a unique combination of courses in emerging technologies, systems engineering know-how and methods as well as management tools tailored for these challenges of mobility: e-drive, auto-drive, communication-over-the-air, and worldwide release and configuration management.

Within the master program specifications in those area can be chosen.

With its long tradition in mobility, electrical, information and communication programs, the Karlsruhe Institute of Technology (KIT) provides an ideal environment. Building on the long-established reputation for excellence in business engineering, our master program combines an in-depth knowledge and understanding of fundamental concepts in business, finance and management with the latest developments in Electronic Systems and Mobility Systems Engineering.

With the new master program participants will acquire tools that will guide their career in this exciting area.
State-of-the-Art Technology Expertise in Mobility Systems

EM 1: Processes, Methods & Tools of ESEM
In EM 1 an introduction to embedded systems & software engineering is given. Processes, methods and tools from object oriented approaches via the V-Model to agile methods are presented (e.g. Scrum). Among those, HW/SW-Co-design and rules how to decide which way to go are explained. How to assess these approaches according to process maturity levels (e.g. SPICE and CMMB) and how to follow the demands of safety (relaying on ISO 26262 and ASIL) and security is introduced focusing on the transportation industry.

Data of sensing and communication are the base for nearly all upcoming new functions of mobility. The importance and methods of their analysis such as anomaly detection is introduced. A case study based on the implementation of a two-wheeled transportation platform (“Segway”) gives a hands-on impression on the complexity of mechatronics system design.

EM 2: Components of Electronic Systems
In order to realize an embedded system in EM 2 a concrete EEme-architecture is designed to modularize the complete functionality. Controllers and processors or ASICs and FPGAs will implement the control logic. Protocols and interfaces (e.g. CAN, FlexRay or wireless/car2x, Ethernet) are appropriate for that. The interfaces to the environment and to machine interaction. Also perception systems play an important role. The electric power train (i.e. the mechatronic integration of energy storage, power & signal electronics, drive control, and electric motor) is the most important and innovative new part of hybrid and full electric vehicles compared to conventional combustion engine cars. High-speed electric motors become more and more powerful in recent years with new technologies like rare earth magnets and field weakening operation. The power-to-weight ratio of modern traction motors is more than a magnitude better compared to industrial electrical machines.

EM 3: Systems Integration & Validation
Finally implementation and integration leads to testing the overall system according to the early requirements. During the overall process of engineering, testing has been prepared and done in order to check the maturity level. Quality assurance has been executed in simulations and prototyping environments. At the end of those phases, the real system can be tested for the first time to finally check the user requirements in a hardware-in-the-loop-environment or even in real test scenarios.

Specialization e-Mobility
EM 3: E-Mobility: Political & Technical Framework
New concepts and new infrastructures are needed for the local supply of electric energy to plug-in and for full electric vehicles. Energy management starts with the generation of energy, which should ideally be done locally, and includes topics like energy storage and energy distribution, as well as intelligent new charging concepts that are geared towards momentary electricity production and consumption.

EM 4: Components & Technologies of ADAS
Modern vehicles have become more and more intelligent. Sensors and cognitive control units detect and communicate with the environment, recognize other vehicles and other traffic participants. They interpret and predict their behavior and improve road safety dramatically. Based on detailed road, infrastructure and traffic data and by using predictive green routing and vehicle operation management, a comfortable, energy and time efficient drive is realized.

EM 5: Systems Integration & Validation
Finally implementation and integration leads to testing the overall system according to the early requirements. During the overall process of engineering, testing has been prepared and done in order to check the maturity level. Quality assurance has been executed in simulations and prototyping environments. At the end of those phases, the real system can be tested for the first time to finally check the user requirements in a hardware-in-the-loop-environment or even in real test scenarios.

Specialization Advanced Driver Assistance Systems (ADAS)
EM 3: Data Communication Technologies & Systems
Autonomous driving will redefine the automotive world. Vehicles will become able to perceive their environment and react autonomously to reduce the risk of accidents, to improve driving efficiency and comfort. Autonomous driving has the potential to improve traffic flow, reduce traffic congestion and save energy. Enhanced traffic management systems will increase the ability of the driver to interact with the car and the surrounding traffic. EM 3 will focus on the functions. The most important control system in the car remains the driver. To get the driver’s acceptance it is very important to create attractive vehicle concepts where the control systems delivers an understanding for its sensation, cognition and action. This module addresses different aspects of the driver vehicle interaction. The drivability deals with the driver’s usability of a vehicle, including ease of use, fulfillment of the driver’s expectations concerning a safe, comfortable and efficient drive, degree of complexity of the driver-vehicle interface, and predictability of the vehicle’s action and reaction. Many different methods to evaluate the driver’s needs, benefits and acceptance exist and will be presented. Additionally, models of traffic flow and traffic management are introduced. Traffic demand modeling as a core concept for modern traffic management will round up the topic.

EM 4: Components & Technologies of ADAS
Modern vehicles have become more and more intelligent. Sensors and cognitive control units detect and communicate with the environment, recognize other vehicles and other traffic participants. They interpret and predict their behavior and improve road safety dramatically. Based on detailed road, infrastructure and traffic data and by using predictive green routing and vehicle operation management, a comfortable, energy and time efficient drive is realized.

EM 5: Systems Integration & Validation
Finally implementation and integration leads to testing the overall system according to the early requirements. During the overall process of engineering, testing has been prepared and done in order to check the maturity level. Quality assurance has been executed in simulations and prototyping environments. At the end of those phases, the real system can be tested for the first time to finally check the user requirements in a hardware-in-the-loop-environment or even in real test scenarios.

Specialization Advanced Driver Assistance Systems (ADAS)
EM 3: Data Communication Technologies & Systems
Autonomous driving will redefine the automotive world. Vehicles will become able to perceive their environment and react autonomously to reduce the risk of accidents, to improve driving efficiency and comfort. Autonomous driving has the potential to improve traffic flow, reduce traffic congestion and save energy. Enhanced traffic management systems will increase the ability of the driver to interact with the car and the surrounding traffic. EM 3 will focus on the functions. The most important control system in the car remains the driver. To get the driver’s acceptance it is very important to create attractive vehicle concepts where the control systems delivers an understanding for its sensation, cognition and action. This module addresses different aspects of the driver vehicle interaction. The drivability deals with the driver’s usability of a vehicle, including ease of use, fulfillment of the driver’s expectations concerning a safe, comfortable and efficient drive, degree of complexity of the driver-vehicle interface, and predictability of the vehicle’s action and reaction. Many different methods to evaluate the driver’s needs, benefits and acceptance exist and will be presented. Additionally, models of traffic flow and traffic management are introduced. Traffic demand modeling as a core concept for modern traffic management will round up the topic.

Specialization Advanced Driver Assistance Systems (ADAS)
EM 3: Components & Technologies of ADAS
Modern vehicles have become more and more intelligent. Sensors and cognitive control units detect and communicate with the environment, recognize other vehicles and other traffic participants. They interpret and predict their behavior and improve road safety dramatically. Based on detailed road, infrastructure and traffic data and by using predictive green routing and vehicle operation management, a comfortable, energy and time efficient drive is realized.

EM 5: Systems Integration & Validation
Finally implementation and integration leads to testing the overall system according to the early requirements. During the overall process of engineering, testing has been prepared and done in order to check the maturity level. Quality assurance has been executed in simulations and prototyping environments. At the end of those phases, the real system can be tested for the first time to finally check the user requirements in a hardware-in-the-loop-environment or even in real test scenarios.
MM 1: INNOVATION & PROJECTS. Numerous paradigm shifts are currently being driven by the development and extensive use of new technologies. Profound changes in rapidly changing markets flow directly from this. Consequently, apart from classic project management, new management tools and methods are required, because agility and innovation are some of the success factors in the current business climate. The module thus focuses on one of KIT’s unique selling points: technology-driven innovation.

MM 2: FINANCE & VALUE. Modern corporate governance is based on the creation of values. In the Finance & Value module, students learn essential methods of decision-making, management, and monitoring of corporate activity added by corporate decisions that enable effective planning, management, and monitoring of corporate activity and corporate units. External value-based communication makes it possible to win stakeholders who are committed to the company over the long term.

MM 3: MARKETING & INFORMATION. Many of today’s most successful businesses excel in satisfying customer needs, because their decisions are based on data instead of gut feeling. This is what this module is about. One week looks at how to use data for designing customer solutions (and get paid according to their value). The other week looks more generally at issues surrounding the use of (big) data for business decision-making.

MM 4: STRATEGY & PEOPLE. The key to corporate success lies in the correct strategy. But how do you recognize opportunities, develop a viable concept, and successfully implement it? In times of scarce human capital, it is more important than ever before to ensure employees are a perfect fit for their position and to motivate them to implement the strategy together. The module imparts state-of-the-art management techniques and know-how on evidence-based human resources management, people analytics, and leadership approaches.

MM 5: DECISIONS & RISK. Management implies making decisions. A valid data warehouse forms the basis for these decisions. The aim of this module is to give students a toolkit of various quantitative decision-making models, so that the possibilities and limitations of methodical decision-making support (among others also optimization methods) can be used efficiently in the day to day running of projects.
In addition to the master programs, the HECTOR School also offers certificate courses (3 - 5 day seminars on state-of-the-art technology topics) and partner programs.

Six Part-time Master Programs

- Production & Operations Management (POM)
- Management of Product Development (MPD)
- Mobility Systems Engineering & Management (MSEM)
- Energy Engineering & Management (EEM)
- Service Management & Engineering (SME)
- Financial Engineering (FE)

HECTOR School of Engineering & Management
International Department of the
Karlsruhe Institute of Technology (KIT) gGmbH
Schlossplatz 19
76131 Karlsruhe/Germany

Phone +49 (0)721-608 47880
Fax +49 (0)721-608 47882
E-mail info@hectorschool.com
Web www.hectorschool.com

Order your free course guide book with detailed contents of the master program!