Executive Master Program
Financial Engineering

Technology + Management
The HECTOR School is the Technology Business School of the Karlsruhe Institute of Technology (KIT). It is named after Dr. Hans-Werner Hector, one of the co-founders of SAP SE.

The school aims to provide professionals with state-of-the-art technological expertise and management know-how within part-time education programs. The HECTOR School fosters lifelong learning within industry. Participants are supported in their career development with executive master degree programs, certificate courses, and customized partner programs.

The benefits of the executive master programs are numerous for participants as well as for the companies they work for:

- **Unique Holistic Approach**: A combination of technology expertise and management know-how.
- **State-of-the-Art Knowledge**: Direct transfer from the Karlsruhe Institute of Technology (KIT) research.
- **Part-Time Structure**: Allows participants to continue with their demanding careers whilst acquiring new skills.
- **Master Thesis to set up Innovation Projects**: Companies gain outstanding added value through the consultation of such projects by professors from KIT.
- **Excellent Networking Opportunities**: Professional networking is fostered across industries and on an international scale.

Key Facts: Part-Time Master of Science (M.Sc.) Programs

Program Structure
- Part-time, 10 x 2-week modules
- Duration: part-time lecture period of ~15 months
- Master thesis: project work in the company, 6 months
- 5 Engineering and 5 Management Modules
- Teaching language: English
- Yearly program start: October

Academic Degree
Master of Science (M.Sc.) from the KIT (90 ECTS)

Admission Requirements
- A first academic degree: e.g. Bachelor, Master or Diploma
- At least 1-2 years work experience (depending on the level of the first degree, recommended > 3 years)
- If English is not your mother tongue nor has it been the language of instruction for the last five years, language proficiency is required, e.g. test certificate (e.g. TOEFL score of at least 570 PBT; 230 CBT; 90 iBT or IELTs at least 6.5 points) or appropriate proof of C1 level.

Accreditation
The KIT is system-accredited by AAQ. All HECTOR School master programs are accredited by the internal quality assurance system of the KIT.
Machine learning is changing nearly all aspects of our lives. Today algorithms execute tasks that until recently only human experts were able to perform. Especially in the financial industry, these developments led to a disruptive change in business models and technology (FinTech and InsurTech) and thus to dramatically transformed risk and investment processes. These new challenges come along with new job opportunities that require a completely new set of skills. Nowadays thorough data science, engineering and programming skills are essential to nearly every task in the risk and investment industry.

In order to prepare you for such tasks, our Master’s program in Financial Engineering offers you a unique combination of finance theory, engineering methods, management tools, mathematical and computational techniques – blended with new developments from the field of artificial intelligence and Big Data. Our master’s program exposes you to these techniques in a practical way, with a focus on hands on applications implemented in the Python programming language.

The Karlsruhe Institute of Technology (KIT) provides an ideal interdisciplinary environment with its long tradition of interdisciplinary programs. Building on the long-established reputation for excellence in business engineering, the two-part program combines in-depth knowledge and understanding of fundamental concepts in business, finance, management, and technology.

Due to the pace of financial innovations, the need for highly qualified people trained in the area of financial engineering and technology is increasing. Whether you aim to contribute to a financial start-up or an innovation lab of a well-established firm, or whether you see yourself progressing in a more classical track in treasury, banking, finance, insurance, venture capital or consulting, the mix of finance, engineering, technology, and programming prepares you for the challenge.

Additionally, the Financial Engineering Program shares five management modules with the other master programs. This fosters cross industry networking and provides the participants with cutting-edge knowledge in technology-driven innovation, strategy, data-driven marketing, international multi-project management, as well as international law, human resource management, people analytics, and different leadership approaches.
Engineering Modules (EM)
Combine Technology and Finance to Manage FinTech Innovations

EM 1: Digital Platforms
The module enables participants to understand and design digital platforms for organizations and markets in order to drive internal and external digitalization. The module first introduces state-of-the-art Enterprise System platform architectures and concepts covering a process-, information-, and people-centric perspective. Furthermore, participants understand trade-offs between standardization and flexibility and know how to leverage digital platforms in organizations in order to find a good balance. Complementing the organizational perspective, market engineering puts an emphasis on the design of information-centric markets and services in order to realize new digital business models. Finally, this module also introduces key concepts and technologies of the Internet of Things (IoT) and Blockchain as an enabler for realizing contemporary digital platforms.

EM 2: Economics of Global Financial Markets
In the last years, modern asset management is experiencing a disruptive transformation. Investment decisions executed by humans are replaced by algorithmic and machine learning software that offers optimized portfolio solutions to investors and customers. These new services come at an incredibly low fee and thus are able to provide sophisticated investment strategies to the broader public. Key to this promising new technology is a thorough understanding of financial markets and portfolio optimization algorithms as well as the technical challenges in setting up such an automated system.

It is the goal of this module to provide that economic understanding of key financial concepts. This module introduces theoretical and empirical insights to understand global financial markets. The main focus is on building valuable intuition that later can be connected with technology to further advance FinTech innovations.

Participants will understand the main risk/return characteristics of equity and fixed-income markets from a conceptual and empirical point of view. There are scientific reasons for why equity beats bond investments in the long-run, and why it is even more advantageous to combine both asset classes into a single portfolio.

EM 3: Massive Data Sets and Machine Learning for Financial Engineering
This module deals with the technological and machine learning aspects of information and knowledge management. The module is divided into two parts. One part lays the foundation for advanced financial machine learning applications. The second part conveys recent technological advancements in information and knowledge management, semantic web services, Big Data, Data Science and cloud Infrastructure.
The foundation for the financial machine learning applications lays out the core concepts necessary to understand how machines learn about return predictability and hidden risks. Students learn concepts to uncover unknown risk and return drivers in small and massive data sets. These concepts are applied and tested with real world data and the Python programming language.

The information technology aspect focuses on data and information management, on the one hand, and on Big Data, on the other hand. The first aspect teaches students practical tools for state-of-the-art semantic web- and web 2.0-technologies, with a focus on the application in corporate environments. The second aspect of Big Data deals with current technical challenges and opportunities when working with massive datasets in a cloud and distributed context.

EM 4: Advanced Finance Theory

In this module, students dive into advanced finance concepts that are of utter importance for transforming the financial industry. Concepts cover corporate finance theory and the pricing and hedging of derivative securities. The corporate finance perspective focuses on how to manage and optimize the financing structure and the dividend policy of corporations. The section on option pricing provides a unified approach to the pricing and hedging of derivative securities.

EM 5: Financial Machine Learning with Artificial Intelligence

Every week new startups emerge that revolutionize the traditional financial industry through the combination of traditional finance concepts with modern AI applications. Particularly in the field of risk and asset management, sophisticated fully automated AI-driven systems take over the task of providing an intelligent portfolio composition to customers. This AI-driven disruption is one of the major developments in the area of financial technology (for both FinTech and InsurTech) with a huge annual growth rate in both assets under management and revenues. In this advanced module, students learn the newest methodologies and techniques to set-up their own robo advisor. To implement the basic structure students will use Python programming language.

Crash Course: Probability and Statistics

We highly recommend all applicants to participate in the course to update the technical knowledge, as it might be the crucial factor for a successful degree at HECTOR School.

Curriculum may be subject to change.
MM 1: Marketing & Information

Many of today's most successful businesses excel in satisfying customer needs because their decisions are based on data instead of good feeling. This is what this module is about: One focus is on how to use data for designing customer solutions (and get paid according to their value) and the other focus is a more general one at issues surrounding the use of (big) data for business decision-making.

MM 2: Finance & Value

Modern corporate governance is based on the creation of values. In the Finance & Value module, students learn essential methods of measuring, processing, and communicating the value added by corporate decisions that enable effective planning, management, and monitoring of corporate activity and corporate units. External value-based communication makes it possible to win stakeholders who are committed to the company over the long term.

MM 3: Decisions & Risk

Management implies making decisions. A valid data warehouse forms the basis for these decisions. The aim of this module is to give students a toolkit of various quantitative decision-making models so that the possibilities and limitations of methodical decision-making support (among others also optimization methods) can be used efficiently in the day-to-day running of projects.

MM 4: Innovation & Projects

Numerous paradigm shifts are currently being driven by the development and extensive use of new technologies. Profound changes in rapidly changing markets flow directly from this. Consequently, apart from classic project management, new management tools and methods are required because agility and innovation are some of the success factors in the current business climate. The module thus focuses on one of KIT's unique selling points: technology-driven innovation.

MM 5: Strategy & People

The key to corporate success lies in the correct strategy. But how do you recognize opportunities, develop a viable concept, and successfully implement it? In times of scarce human capital, it is more important than ever before to ensure employees are a perfect fit for their position and to motivate them to implement the strategy together. The module imparts state-of-the-art management techniques and know-how on evidence-based human resources management, people analytics, and leadership approaches.
It is difficult to continuously keep up with the newest industry developments and integrate state-of-the-art expertise in our daily work. The master program in Financial Engineering at the HECTOR School provided me with exactly these strategic, expert and interpersonal skills, which I found highly valuable when facing the enormous challenges arising out of the on-going disruption in the banking business. During the program I further built up a network of like-minded professionals from different industries with an international background, whose diverse views I learned to appreciate in the various case study discussions we had in class. Amongst others, these experiences successfully guided my career in the international banking business.

Academic Calendar

The academic calendar for each program starts annually in October. It consists of 10 modules, each with a duration of 2 weeks. All programs conclude with a master thesis.

- **Master Thesis:** 6 months project work
Six Part-Time Master of Science Programs in

- Management of Product Development (MPD)
- Production & Operations Management (POM)
- Mobility Systems Engineering & Management (MSEM)
- Energy Engineering & Management (EEM)
- Financial Engineering (FE)
- Information Systems Engineering & Management (ISEM)

In addition to the master programs, the HECTOR School also offers **certificate courses** (3 - 5 day seminars on state-of-the-art technology topics) and **partner programs**.

HECTOR School of Engineering & Management
International Department of the
Karlsruhe Institute of Technology (KIT) gGmbH
Schlossplatz 19
76131 Karlsruhe/Germany

Phone +49 (0)721-608 47880
Fax +49 (0)721-608 47882
E-mail info@hectorschool.com
Web www.hectorschool.kit.edu

Order your free course guide book with detailed contents of the master program!

Imprint

Errors and omissions excepted.
Publisher: Marketing Department
HECTOR School of Engineering & Management
Edition: 01/2020
Photos: International Department gGmbH,
Karlsruhe Institute of Technology (KIT), iStock