Executive Master Program
Energy Engineering & Management
Technology + Management
The HECTOR School is the Technology Business School of the Karlsruhe Institute of Technology (KIT). It is named after Dr. Hans-Werner Hector, one of the co-founders of SAP SE.

The school aims to provide professionals with state-of-the-art technological expertise and management know-how within part-time education programs. The HECTOR School fosters lifelong learning within industry. Participants are supported in their career development with executive master degree programs, certificate courses, and customized partner programs.

The benefits of the executive master programs are numerous for participants as well as for the companies they work for:

- **Unique Holistic Approach**: A combination of technology expertise and management know-how.
- **State-of-the-Art Knowledge**: Direct transfer from the Karlsruhe Institute of Technology (KIT) research.
- **Part-Time Structure**: Allows participants to continue with their demanding careers whilst acquiring new skills.
- **Master Thesis to set up Innovation Projects**: Companies gain outstanding added value through the consultation of such projects by professors from KIT.
- **Excellent Networking Opportunities**: Professional networking is fostered across industries and on an international scale.

### Key Facts: Part-Time Master of Science (M.Sc.) Programs

#### Program Structure
- Part-time, 10 x 2-week modules
- Duration: part-time lecture period of ~15 months
- Master thesis: project work in the company, 9 months
- 5 Engineering and 5 Management Modules
- Teaching language: English
- Yearly program start: October

#### Academic Degree
Master of Science (M.Sc.) from the KIT (90 ECTS)

#### Admission Requirements
- A first academic degree: e.g. Bachelor, Master or Diploma
- At least 1-2 years work experience (depending on the level of the first degree, recommended > 3 years)
- If English is not your mother tongue nor has it been the language of instruction for the last five years, language proficiency is required, e.g. test certificate (e.g. TOEFL score of at least 570 PBT; 230 CBT; 90 iBT or IELTs at least 6,5 points) or appropriate proof of C1 level.

#### Accreditation
The KIT is system-accredited by AAQ. All HECTOR School master programs are accredited by the internal quality assurance system of the KIT.
Master Program
Energy Engineering & Management (EEM)

Batteries Corporate Innovation & Entrepreneurship
E-Mobility Integration of Renewables Power Generation
Energy Systems Analysis
Finance & Value Wind Energy Plants Marketing & Data
Electroenergy Market Emerging Technologies Decisions
& Risk Energy Storage
Smart Grids & Buildings
Innovation & Projects
Efficiency Power to X

»The energy transition is associated with many challenges, such as an increase in the efficiency of energy conversion systems based on renewable energies and their integration into future energy systems, requiring e.g. the development of capable energy storage systems and an intelligent demand side management. EEM covers all of these aspects and provides the skills to successfully face the challenges.«
Prof. Dr.-Ing. Hans-Jörg Bauer

The master program, Energy Engineering & Management, is focused on professionals working in companies that deal with the generation, transportation, distribution, storage and sale of energy (electrical, thermal, etc.), their suppliers and industrial sectors that rely on energy heavily. Graduates of the program stand out due to an extensive overview on present an future technology for new energy systems. They are able to significantly participate in the successful introduction of new sustainable energy systems and to appraise not only the sustainability but also the aspects of operating efficiency, availability and safety as well and can evaluate them adequately.

Graduates can therefore understand, quantitatively describe, evaluate and optimize the elements of energy systems and their complex interactions. They are able to understand innovation processes and can effectively and successfully apply their knowledge either in existing companies or when founding “start-ups”. Professional, methodical, process and management knowledge is essential for this, as it is imparted in the modules of Energy Engineering & Management.

»The implementation of a sustainable energy system requires networked methods and models that provide companies, politics and society with the necessary basis for making scientifically sound decisions on the design of the energy system transformation. „Energy Engineering and Management“ enables the students to play an active role in this transition process.«
Prof. Dr.-Ing. Marc Hiller

Additionally, internationalization and mobility are key factors of the master program since the energy sector operates internationally. This is emphasized by the cooperation with the Knowledge Innovation Centre InnoEnergy and therefore supports the aims of the European Union to achieve a climate neutral and sustainable energy supply. Furthermore, one result of the cooperation is an exchange module with the worldwide renowned Business School ESADE in Barcelona/Spain.

In addition to the engineering expertise, Energy Engineering & Management shares five management modules with the other master programs. This fosters networking across industries and provides the participants with general knowledge in finance, accounting, marketing, international multi-project management, international law, and human resource management. Therefore, they can consider the commercial implications of project decisions and develop a holistic view.

Program Directors

Prof. Dr.-Ing. Hans-Jörg Bauer
Institute of Thermal Turbo Machines, KIT

Prof. Dr.-Ing. Marc Hiller
Institute of Electrical Engineering, KIT

Prof. Dr.-Ing. Dimosthenis Trimis
Engler-Bunte-Institute, KIT

Prof. Dr. Stefan Nickel
Institute of Operations Research, KIT
EM 1: Renewables

The module starts with a general introduction to the challenges of energy supply, examining the historic and future developments of global energy requirements as well as existing primary energy sources and reserves. Aside from this, it provides an overview of the energy cascade from the primary energy sources through the various stages of energy conversion, the transportation and distribution of energy to its ultimate use. Technical, ecological and socio-economic aspects are highlighted.

During the presentation of energy systems based on renewable sources of energy, the focus is placed on wind and hydroelectric power as well as geothermal and solar thermal energy. For didactic reasons, systems based on other renewables, such as photovoltaics and biomass, are dealt with in other engineering modules.

For the processes covered in this course, the supply of renewable primary energy provided by nature is first described, before investigating the individual technical features of the power plants. Wind energy plants serve as an example to convey the interdisciplinary nature of energy conversion plants, in which fluid mechanical, static, mechanical, electrical and electronic considerations are all closely linked to systemic and economic aspects.

EM 2: Thermal Energy Conversion

The module provides an overview on thermal processes for power and heat production from fossil and biogenic fuels. The whole range of fuel to energy via thermal processes is covered, starting from the combustion process, coal and gas fired power plants, gas and steam turbines, CO₂ reduction by capture and storage, and finally special aspects of biomass utilization.

Based on a sound knowledge of the technical fundamentals, the module will lead to the understanding of complex energy conversion systems and typical plants. The participants develop and improve their evaluation skills with regards to technology, economy and ecology.

EM 3: Electricity Generation & Energy Storage

In this module, the focus is on the generation of electricity on the one side and energy storage on the other. The most commonly used power generator in electrical power stations is the gas turbine. Understanding and knowledge of critical issues related to synchronous generator operation is provided.
In addition, photovoltaics is one of the most discussed forms of renewable energy generation. It converts solar radiation directly into electrical energy. Participants will understand photovoltaics as an energy source, its working principle and mechanisms to improve efficiency. This will provide insights into the public as well as scientific discussion and highlights boundary conditions with regard to requirements of energy storage.

Batteries and fuel cells are one way to store the power. The participants will become familiar with the concepts of electrochemical energy storage and the design of efficient batteries. The module discusses the available state-of-the-art fuel cell technologies and their efficiencies as well as the respective opportunities and limitations.

**EM 4: Smart Networks & Energy Distribution**

This module gives an overview of major power system components, structure and main operation behavior. It starts with an introduction to power systems and basic knowledge of high voltage engineering.

The second part focuses on the main components and describes mainly the function, state-of-the art and their behavior. The main transmission and distribution aspects are covered in the third part of the module, including network calculation and control. Due to recent and future changes in power systems a strong focus in part four is on smart grids and their performance. Additionally, building performance with respect to energy balance and energy sources is included.

**EM 5: Energy Economics**

Various peculiarities of the energy market (energy efficiency on the supply and demand side, electric mobility, market opening, regulation, etc.) are analyzed from a techno-economic point of view within this module.

In order to be able to identify optimal strategies within this complex sector, there is an introduction into energy systems analysis at the beginning of the module. Energy systems analysis considers the totality and the interactions of energy systems, among other things, with the commodities industry, the building trade, industry and transport. The integration of energy systems and e-mobility concludes this module.

**Order your free course guide book with detailed contents of the Master Program!**

---

Crash Courses: Selected Topics of Electrical Engineering or Thermodynamics, and Fluid Mechanics

We highly recommend all applicants to participate in the course to update the technical knowledge, as it might be the crucial factor for a successful degree at HECTOR School.
Management Modules Modules (MM)
Economic Know-How for Successful Managers

MM 1: Marketing & Information
Courses: Designing and Selling Solutions (incl. Negotiation Training), Information Systems Management, Big Data Methods, Legal Aspects of Marketing and Information

MM 2: Finance & Value
Courses: Management Accounting, Financial Accounting, Strategic Financial Management, Case Studies

MM 3: Decisions & Risk
Courses: Decision Modeling, Risk Aware Decisions, Interactive Decisions, Robust and Stochastic Optimization

MM 4: Corporate Innovation and Intrapreneurship

MM 5: Strategy & People

Curriculum may be subject to change.

MM 1: Marketing & Information
Many of today's most successful businesses excel in satisfying customer needs because their decisions are based on data instead of good feeling. This is what this module is about: One focus is on how to use data for designing customer solutions (and get paid according to their value) and the other focus is a more general one at issues surrounding the use of (big) data for business decision-making.

MM 2: Finance & Value
Modern corporate governance is based on the creation of values. In the Finance & Value module, students learn essential methods of measuring, processing, and communicating the value added by corporate decisions that enable effective planning, management, and monitoring of corporate activity and corporate units. External value-based communication makes it possible to win stakeholders who are committed to the company over the long term.

MM 3: Decisions & Risk
Management implies making decisions. A valid data warehouse forms the basis for these decisions. The aim of this module is to give students a toolkit of various quantitative decision-making models so that the possibilities and limitations of methodical decision-making support (among others also optimization methods) can be used efficiently in the day-to-day running of projects.

MM 4: Corporate Innovation & Intrapreneurship
The module provides knowledge regarding strategies on how to manage innovation within the company and how to apply tools, models and processes that are necessary to generate innovative ideas. It focuses on issues like corporate innovation, corporate entrepreneurship, measuring innovation and innovation in practice. Participants will acquire skills such as understanding the organizational context, managing change, decision-making and innovation. It takes place at the ESADE Business School in Barcelona/ Spain.

MM 5: Strategy & People
The key to corporate success lies in the correct strategy. But how do you recognize opportunities, develop a viable concept, and successfully implement it? In times of scarce human capital, it is more important than ever before to ensure employees are a perfect fit for their position and to motivate them to implement the strategy together. The module imparts state-of-the-art management techniques and know-how on evidence-based human resources management, people analytics, and leadership approaches.
A HECTOR School Master: Leadership Know-How for Demanding Careers.

Marcus Welz
Master in EEM
Head of Global Sales, SIEMENS AG

KIT provides an intensive, exciting, and focused opportunity to improve every aspect of my business & technology skills. It was an immensely stimulating experience. Every day was intense but extremely rewarding. KIT expanded my mind. After the master program, the world became smaller and my personal and professional goals grew bigger. Networking was valuable from a professional standpoint, but it was my classmates’ real-life experiences and diverse backgrounds that broadened my perspective. I developed solid relationships with many of my classmates. We often meet or email each other, and they are becoming something like a personal board of directors whose judgment I trust. This was an inestimable feature of the master program, and it’s something I did not expect.

Alumni Voices on our YouTube Channel

Academic Calendar

The academic calendar for each program starts annually in October. It consists of 10 modules, each with a duration of 2 weeks. All programs conclude with a master thesis.

» Master Thesis: 9 months project work

MM Management Modules
EM Engineering Modules
Exams

Crash Course
5-day seminar in Selected Topics of “Electrical Engineering” or “Thermodynamics, and Fluid Mechanics”

Please note: Dates are subject to change.
More Master Programs

Six Part-Time Master of Science Programs in
- Management of Product Development (MPD)
- Production & Operations Management (POM)
- Mobility Systems Engineering & Management (MSEM)
- Energy Engineering & Management (EEM)
- Financial Engineering (FE)
- Information Systems Engineering & Management (ISEM)

In addition to the master programs, the HECTOR School also offers certificate courses (3 - 5 day seminars on state-of-the-art technology topics) and partner programs.

HECTOR School of Engineering & Management
International Department of the
Karlsruhe Institute of Technology (KIT) gGmbH
Schlossplatz 19
76131 Karlsruhe/Germany

Phone     +49 (0)721-608 47880
Fax        +49 (0)721-608 47882
E-mail     info@hectorschool.com
Web        www.hectorschool.kit.edu

Order your free course guide book with detailed contents of the master program!

Imprint
Errors and omissions excepted.
Publisher: Marketing Department
HECTOR School of Engineering & Management
Edition: 03/2020
Photos: International Department gGmbH,
Karlsruhe Institute of Technology (KIT), iStock