No Blackout

Resilient reliable power supply despite renewable energies and decentralization

Article within the current edition of the KIT magazine lookKIT on information at the Karlsruhe Institute of Technology, Edition 1/2019. The text was written in English, an excerpt is available in German at the end of the text.


Power supply is one of the most important of all critical infrastructures (CIs). Bottlenecks in this area affect all other CIs. The current transformation of the power supply system through expansion of renewable energies and increased decentralization, digitallization, and networking can result in malfunction and partial breakdowns affecting the whole system. To address power shortages in a flexible, finely tuned and, if possible, real-time mode, Dr. Sadeeb Simon Ottenburger, scientist at the Institute of Nuclear and Power Technologies (IKET) and Center for Disaster Management and Risk Reduction Technology (CEDIM), advocates smart grid technologies.

Dr. Sadeeb Simon Ottenburger, scientist at the Institute of Nuclear and Energy Technologies (IKET) and Center for Disaster Management and Risk Reduction Technology in the Solar Power Storage Park on KIT Campus North

“The smart grid offers a lot of potential to make power supply and infrastructures in cities and municipalities more resilient and, in this way, add to the continuity of supply,” explains the resilience researcher. However, resilience research faces major challenges in further development of intelligent grids. Power generation and power supply are at present undergoing fundamental changes. Power supply systems are becoming more and more complex, with many technical components that must reliably work together. This has increased vulnerabilities to attacks and added to the potential of operational breakdowns. “As power supply is becoming more and more dependent on information and communication technologies, cyber attacks must increasingly be considered as causes of breakdowns, next to severe weather events or natural disasters,” says Wolfgang Raskob, Head of the IKET Working Group on Accident Consequences. In addition, more and more electricity from volatile sources, such as sun and wind, is being fed into the grid because of the energy transition. In Ottenburger’s expert assessment, it must also be assumed that the widespread use of new technologies, such as e-mobility, will raise power consumption in ways that could cause shortages or overload conditions.


Against this backdrop, resilience is a topic of increasing importance in energy research. In a technical context, it describes the robustness of a system and its ability to return quickly to 100% performance after a state of shock. “We are not talking here about single components, such as a power pole, which we want to make more robust,” emphasizes Ottenburger. Instead of prioritizing repair measures to protect individual infrastructures, he prefers new, smart distribution concepts to be initiated in situations critical for the power grid, which exceed the familiar possibilities of control technology and ensure electricity distribution without discrimination. “We must learn how to handle power shortage scenarios in a preventive, flexible and real-time way – irrespective of the causes.”


Present considerations of resilience, as a rule, are based on individual systems and infrastructures, respectively. For power supplies, this means that these systems are returned to normal conditions as quickly as possible after a breakdown. However, no measures are taken automatically, given the many infrastructures that are dependent on electricity. In his approach, Ottenburger focuses on criticality. This describes the importance of a specific infrastructure, such as a hospital, in terms of the consequences its breakdown could have on the security of supply of the population. Ottenburger wants the criticality concept to be expanded and its scientific basis established so that criticality could be anchored and operationalized in an automated electricity management system. Under existing regulations, the new approach is not based on CIs only, but on all infrastructures. The expert therefore refers to “critical loads.” These loads can arise practically anywhere. This means that, for instance, the resilience assessment of a city or municipality includes not only the central hospital, but also the household of a patient undergoing dialysis at home who does not need much electricity, but reliable electricity in case of a power shortage.


The process could be as follows: ICT infrastructures collect the required data, e.g. the amount of electricity available, the maximum possible power consumption, actual power consumption at certain intervals, and the criticality value of a load. Smart meters communicate these data and how they change over time. In case of a power shortage, the algorithms would thus have all the information necessary for an equitable distribution of the current volume of electricity. This kind of “object-focused” load management could stabilize power supply during power shortages or during phases of extreme load demands, thus preventing blackout. However, this presupposes that smart grids become “even smarter.” Future load management would thus be significantly influenced not only by the further development of smart meters as central communication channels between suppliers and consumers, but also by all potential consumers being equipped with gateways.


Other important variables are grid topology and component configuration. In Ottenburger’s approach, topology is based on microgrids, i.e., many small islands of supply able to make electricity available independently. This kind of topology plays an important role in the development of algorithms for resilient power distribution. More room is offered also by the configuration of components important to power distribution within a microgrid, i.e. generators and stores as well as components of the ICT grid proper. Incorporating this new approach in one concept is now the focus of fundamental research. Participants in this effort, besides IKET, are the Institute for Program Structures and Data Organization (IPD), the Institute for Industrial Production (IIP), and the Institute for Automation and Applied Informatics (IAI).


The topology of a smart grid, which is determined mainly by the decomposition into microgrids and the configuration of individual grids, is to become a variable in a simulation model and include the criticality of specific loads from the beginning. This allows analysis of a variety of failure scenarios for individual model cities or model regions, taking into account changing conditions. In a first step, scientists want “to model the world as accurately and realistically as possible.” The results of the simulation studies could then become a tool in urban and grid planning. “We are opening up a new area of energy research at KIT, in this way intending to make a foresighted contribution towards strengthening the resilience of urban space as a whole.”


Contact: ottenburger does-not-exist.kit edu


Auszug auf Deutsch

Krisenfeste Stromversorgung trotz Erneuerbarer Energien und Dezentralisierung

Übersetzung: Ralf Friese


Unter den kritischen Infrastrukturen (KRITIS) zählt die Energieversorgung zu den wichtigsten. Kommt es hier zu Engpässen hat dies Auswirkungen auf alle anderen KRITIS. Die aktuelle Transformation der Stromversorgung mit dem Ausbau Erneuerbarer Energien sowie einer zunehmenden Dezentralisierung, Digitalisierung und Vernetzung kann zu Störungen und Teilausfällen führen, die sich auf das Gesamtsystem auswirken. Um mit Strommangelzuständen flexibel, fein justiert und möglichst in Echtzeit umgehen zu können, setzt Dr. Sadeeb Simon Ottenburger, Wissenschaftler am Institut für Kernund Energietechnik (IKET) und Center for Disaster Management and Risk Technology (CEDIM), auf Smart Grid-Technologien.


„Das Smart Grid bietet große Potenziale, um die Stromversorgung und Infrastrukturen in Städten und Kommunen widerstandsfähiger zu machen und damit die Versorgungssicherheit zu erhöhen“, erklärt der Resilienzforscher. Ebenso groß seien jedoch auch die Herausforderungen, vor denen die Resilienzforschung mit Blick auf die Weiterentwicklung der intelligenten Netze stehe. Denn die Stromerzeugung und -lieferung wandelt sich gerade grundlegend. Energieversorgungssysteme werden immer komplexer mit vielen technischen Komponenten, die zuverlässig zusammenspielen müssen. Damit vergrößert sich die Angriffsfläche und das Potenzial für Betriebsstörungen erhöht sich. Hinzu kommt, dass mit der Energiewende immer mehr Strom aus volatilen Erzeugern wie Sonne und Wind ins Netz eingespeist wird. Vor diesem Hintergrund gewinnt das Thema Resilienz in der Energieforschung immer größere Bedeutung. Im technischen Kontext beschreibt sie die Robustheit eines Systems und seine Fähigkeit, nach einem Schockzustand schnell wieder zu einer hundertprozentigen Performance zurück zu kommen.


Nach Ottenburgers Ansatz baut die Topologie auf „Microgrids“ auf, also vielen kleinen Versorgungsinseln, die voneinander unabhängig Strom zur Verfügung stellen können. So eine Topologie spielt bei der Entwicklung von Algorithmen für eine resiliente Stromverteilung eine wichtige Rolle. Spielraum bietet zum anderen die Konfiguration der für die Stromverteilung wichtigen Komponenten innerhalb eines Microgrids, also der Erzeuger und Speicher sowie der Komponenten des IKT-Netzes selbst. Den neuen Ansatz in ein Konzept zu gießen, ist jetzt Aufgabe der Grundlagenforschung. Hieran beteiligen sich neben dem IKET auch das Institut für Programmstrukturen und Datenorganisation (IPD), das Institut für Industriebetriebslehre und Industrielle Produktion (IIP) sowie das Institut für Automation und angewandte Informatik (IAI).


Kontakt: ottenburger does-not-exist.kit edu